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Introduction
Basic definitions and examples
Covering problems in this thesis
Graph packing

Vertex-version covering

Let G = (V,E) be a graph.

Let P be a property of the vertex set V (G).

A vertex-version P-covering (or simply, P-covering) of a

graph G is a set L = {V1, . . . , Vs} of vertex subsets of V (G),

where each vertex subset satisfies the property P, and

s⋃
i=1

Vi = V (G).

5 / 196



Introduction
Basic definitions and examples
Covering problems in this thesis
Graph packing

Vertex-version covering

Let C(P, G) be the set of all P-coverings of G.

Usually the goal is finding the P-covering number, that is,

min
L={V1,...,Vs}∈C(P,G)

f(V1, . . . , Vs)

for some function f .
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Edge-version covering

Similarly, let P ′ be a property of the edge set E(G).

A edge-version P ′-covering (or simply, P ′-covering) of a

graph G = (V,E) is a set L′ = {E1, . . . , Et} of edge subsets

of E(G), where each edge subset satisfies the property P ′, and

t⋃
i=1

Ei = E(G).
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Basic definitions and examples
Covering problems in this thesis
Graph packing

Edge-version covering

Let C′(P ′, G) be the set of all P ′-coverings of G.

Usually the goal is finding the P ′-covering number, that is,

min
L′={E1,...,Et}∈C′(P ′,G)

f(E1, . . . , Et)

for some function f .
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Examples - edge cover

An edge cover of a graph G is a set of edges C such that each

vertex in G is incident with at least one edge in C, that is,⋃
e∈C

N(e) = V (G)

where N(e) be the set of vertices which is incident to e.

A minimum edge covering is an edge covering of smallest

possible size.

The edge covering number β′(G) = minC |C| is the size of

a minimum edge covering.
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Examples - clique cover

A clique cover of a graph G is a set of cliques C such that

each vertex in G is in at least one clique in C, that is,

⋃
K∈C

V (K) = V (G).

A minimum clique covering is a clique covering of smallest

possible size.

The clique covering number θ(G) = minC |C| is the size of

a minimum clique covering.
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Examples - domination

A dominating set for a graph G = (V,E) is a subset D of V

such that every vertex not in D is adjacent to at least one

member of D. That is,

⋃
v∈D

N [v] = V (G)

where N [v] is the closed neighborhood set of v.

The domination number γ(G) = minD |D| is the number of

vertices in a smallest dominating set for G.
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Basic definitions and examples
Covering problems in this thesis
Graph packing

Examples - coloring

A proper k-vertex coloring of a graph is a labelling

{1, 2, . . . , k} of the vertices V (G) of a graph G with colors

such that no two vertices sharing the same edge have the

same color. That is,
k⋃

i=1

Ii = V (G)

where Ii is an independent set.

A graph is k-edge colorable if it has a proper k-edge coloring.

The chromatic number χ(G) is the least k such that G is

k-vertex colorable.
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Examples - edge coloring

A proper k-edge coloring of a graph is a labelling [k] of the

edges E(G) of a graph G with colors such that no two edges

sharing the same vertex have the same color. That is,

k⋃
i=1

I ′i = E(G)

where I ′i is an independent edge set.

A minimum edge covering is an edge covering of smallest

possible size.

The chromatic index χ′(G) is the least k such that G is

k-edge colorable.
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Covering problems in this thesis
Graph packing

Examples - vertex cover

A vertex cover of a graph is a set of vertices such that each

edge of the graph is incident to at least one vertex of the set.

The set S is said to “cover” the edges of G, that is⋃
v∈S

N ′(v) = E(G)

where N ′(v) be the set of edges whose end vertex is v.

A minimum vertex cover is a vertex cover of smallest

possible size.

The vertex covering number β(G) = minS |S| is the size of

a minimum vertex cover. 14 / 196
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Basic definitions and examples
Covering problems in this thesis
Graph packing

Examples - cycle cover

An Euler cycle is a graph such that the degree of each vertex

is even.

A family F of Euler cycles of G is a cycle cover of G if every

edge of G is contained in at least one Euler cycle of F .

That is, ⋃
C∈F

C = E(G).
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Covering problems in this thesis
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Examples - cycle cover

A minimum cycle cover is a cycle cover of smallest possible

size.

The cycle covering number c(G) = minF |F| is the size of a

minimum cycle cover.
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Examples - graph process

Let fl : V (G)→ R (l ≥ 0) be a labelling of graphs G, then

(f0, f1, . . . ) is called a graph process.

A set T ⊆ R is called a target set of this process.

The hitting time of v is the least number l such that

fl(v) ∈ T .
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Examples - graph process

The cover time of G is the least number l such that

⋃
v∈V (G)

{v : fl(v) ∈ T} = V (G).

The n-tuple f0 is initial configuration and ft is final

configuration if the process is stop.

The graph process can be chosen from player or automatically,

for example, chip-firing game is in the former case and

random walk on graphs is in the latter case.
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Strong edge coloring

An induced matching of a graph is a set of edges in which

every two distinct edges are not adjacent and not adjacent to

a same edge.

We say G has a strong k-edge coloring if there exists k

induced matchings I1, I2, . . . , Ik such that

k⋃
i=1

Ii = E(G).

The strong chromatic index of G is the least number k such

that G has a strong k-edge coloring.

19 / 196



Introduction
Basic definitions and examples
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Edge Roman domination

An edge Roman dominating function of a graph G is two

disjoint edge subsets (E1, E2) of E(G) such that

⋃
e∈E1

e ∪
⋃
e∈E2

N ′[e] = E(G)

where N ′[e] is the closed neighborhood edge-set of e.

The edge Roman domination number of G is the minimum

possible |E1|+ 2|E2| if (E1, E2) is an edge Roman

dominating function of G.
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Power Roman domination

An k-power Roman dominating function of a graph G is k

disjoint vertex subsets (V1, . . . , Vk) of V (G) such that

k⋃
i=1

⋃
v∈Vi

Ni−1[v] = V (G)

where Ni[v] is the set of closed vertex neighbors within

distance i.

The k-power Roman domination number of G is the

minimum possible
∑k

i=1 i|Vi| if (V1, . . . , Vk) is an k-power

Roman dominating function of G.
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k-distance edge cover

An k-distance edge cover of a graph G is k disjoint edge

subsets (E1, . . . , Ek) of E(G) such that

k⋃
i=1

⋃
e∈Ei

Ni−1(e) = E(G)

where Ni(e) is the set of vertex neighbors within distance i.

The k-distance edge covering number of G is the minimum

possible
∑k

i=1 i|Ei| if (E1, . . . , Ek) is an k-distance edge

cover of G.
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Cycle double cover and nowhere-zero flow

A k-cycle double cover is a family of k Euler cycles

C1, . . . , Ck such that

k⋃
i=1

Ci = E(G)

and each edge of G is contained in precisely two Euler cycles

of this family.

The cycle double covering number of G is the least number

k such that G has an k-cycle double cover.
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Graph packing

Cycle double cover and nowhere-zero flow

A nowhere-zero k-flow of a graph G is an edge labeling of

{±1, . . . ,±(k − 1)} on an orientation D(G) of G such that

for every vertex, the sum of in-edge labels is the sum of out

edge labels.

There is an important relation between cycle double cover and

nowhere-zero flow, that is, if a graph G has a k-cycle double

cover, then G has a nowhere-zero k-flow.
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Relaxation procedure

Suppose G is a connected with V (G) = {v1, v2, . . . , vn}.

An n-tuple X = (x1, x2, . . . , xn) = (X(v1), . . . , X(vn)) of

real numbers is called a configuration of G if each vertex vi

in G is assigned with the label xi, and suppose the sum

s =
∑n

i=1 xi is positive.

If there is a negative label xi, then a legal relaxation R(i) for

X is defined as the operation which transform X into

X ′ = XR(i) = (x′1, x
′
2, . . . , x

′
n) obtained from replacing xi by

−xi > 0 and add 2xi/di to each of the di neighbors of vi.
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Relaxation procedure

A relaxation procedure for X of G is a sequence of

configurations X = X0, X1, X2, . . . and a sequence of

relaxations R(k1), R(k2), . . . such that Xi = Xi−1R
(ki) for

i ≥ 1.

We say that the relaxation procedure terminates if

n⋃
i=1

{vi : Xt(vi) > 0} = V (G)

for some t, that is, there is no legal relaxation for Xt.
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Primal-dual view

Consider the linear programming relaxation of the 0-1 integer

linear programming of the covering problem.

For the matrix A and the non-negative vectors b, c,

Minimize : bT x

subject to : AT x ≥ c

x ≥ 0.
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Primal-dual view

From primal-dual view, we refer to the covering problem as the

“primal problem”, and we state the “dual problem” as follows.

For the matrix A and the non-negative vectors b, c,

Maximize : cT y

subject to : Ay ≤ b

y ≥ 0.
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Vertex-version packing

Let G = (V,E) be a graph.

Let P be a property of the vertex set V (G).

A vertex-version P-packing (or simply, P-packing) of a

graph G = (V,E) is a set L = {V1, . . . , Vs} of disjoint vertex

subsets of V (G), where each vertex subset satisfies the

property P.
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Vertex-version packing

Let P(P, G) be the set of all P-packing of G.

Usually the goal is finding the P-packing number, that is,

max
L={V1,...,Vs}∈P(P,G)

g(V1, . . . , Vs)

for some function g.
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Edge-version packing

Similarly, let P ′ be a property of the edge set E(G).

A edge-version P ′-packing (or simply, P ′-packing) of a

graph G = (V,E) is a set L′ = {E1, . . . , Et} of disjoint edge

subsets of E(G), where each edge subset satisfies the

property P ′.
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Edge-version packing

Let P ′(P ′, G) be the set of all P ′-packings of G.

Usually the goal is finding the P ′-packing number, that is,

max
L′={E1,...,Et}∈P ′(P ′,G)

g(E1, . . . , Et)

for some function g.
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Strong Edge Coloring
Edge Roman Domination

Power Roman Domination

Introduction
Strong edge-coloring on cacti
Perfection for strong edge-coloring

Definitions

A strong edge-coloring of a graph is a function that assigns

to each edge a color such that any two edges within distance

two apart receive different colors.

A color class of a strong edge-coloring is the set of all edges

using the same color.

A strong k-edge-coloring is a strong edge-coloring using at

most k colors.

34 / 196



Strong Edge Coloring
Edge Roman Domination

Power Roman Domination

Introduction
Strong edge-coloring on cacti
Perfection for strong edge-coloring

Definitions

An induced matching is an edge set in which two distinct

edges are of distance at least two.

Finding a strong k-edge-coloring is equivalent to partitioning

the edge set of the graph into k induced matchings.

The strong chromatic index of a graph G, denoted by

χ′s(G), is the minimum k such that G admits a strong

k-edge-coloring.
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Introduction
Strong edge-coloring on cacti
Perfection for strong edge-coloring

Known results

Strong edge-coloring was first studied by Fouquet and Jolivet

(1983) for cubic planar graphs.

By a greedy algorithm, it is easy to see that

χ′s(G) ≤ 2∆2 − 2∆ + 1 for any graph G of maximum degree

∆.

Fouquet and Jolivet established a Brooks type upper bound

χ′s(G) ≤ 2∆2 − 2∆, which is not true only for G = C5 as

pointed out by Shiu and Tam (2009).
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Introduction
Strong edge-coloring on cacti
Perfection for strong edge-coloring

Known results

Conjecture

If G is a graph of maximum degree ∆, then χ′s(G) ≤ ∆2 + b∆
2 c

2.

It was posed by Erdős and Nešeťril (1989) and revised by

Faudree, Gyárfás, Schelp and Tuza (1990).

For ∆ = 3, true by Andersen (1992) and by Horák, Qing and

Trotter (1993) independently.

For ∆ = 4, Horák (1990) obtained χ′s(G) ≤ 23 and Cranston

(2006) proved χ′s(G) ≤ 22.
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Introduction
Strong edge-coloring on cacti
Perfection for strong edge-coloring

Known results

Molloy and Reed (1997) proved that for large ∆ every graph

of maximum degree ∆ has χ′s(G) ≤ 1.998∆2 using

probabilistic method.

Mahdian (2000) proved that for a C4-free graph G,

χ′s(G) ≤ (2 + o(1))∆2/ ln ∆.

Faudree, Gyárfás, Schelp and Tuza (1990) proved that for

graphs where all cycle lengths are multiples of four,

χ′s(G) ≤ ∆2.
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Known results

Brualdi and Massey (1993) improved the upper bound to

χ′s(G) ≤ αβ for such graphs, where α and β are the

maximum degrees of the respective partitions.

Chang and Narayanan (2013) proved that χ′s(G) ≤ 8∆− 6 for

chordless graphs G.

Faudree, Gyárfás, Schelp and Tuza (1990) established that

χ′s(G) ≤ 10∆− 10 for 2-degenerate graphs G.
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Perfection for strong edge-coloring

Known results

Conjecture (Faudree, Gyárfás, Schelp and Tuza, 1990)

χ′s(G) ≤ 9 if G is cubic planar.

Faudree, Gyárfás, Schelp and Tuza (1990) used the Four-color

theorem to show that χ′s(G) ≤ 4∆(G) + 4 for any planar

graph G of maximum degree ∆.

They also exhibited a planar graph G whose strong chromatic

index is 4∆(G)− 4.
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Known results

Conjecture (Faudree, Gyárfás, Schelp and Tuza, 1990)

χ′s(G) ≤ 9 if G is cubic planar.

They also that χ′s(G) ≤ 3∆ for planar graphs G of girth at

least 7.

Chang, Montassier, Pecher and Raspaud (2013) further proved

that χ′s(G) ≤ 2∆− 1 for planar graphs G with large girth.
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Introduction
Strong edge-coloring on cacti
Perfection for strong edge-coloring

Definitions

A block of a graph is a maximal connected subgraph without

cut-vertices in itself.

A block graph is a graph whose blocks are complete graphs.

A Cactus is a graph whose blocks are cycles or complete

graphs of two vertices.
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Trees

A closed edge-neighborhood of an edge

σ(G) := max
uv∈E(G)

(dG(u) + dG(v)− 1)

is an easy lower bound of χ′s(G),

Theorem (Faudree, Gyárfás, Schelp and Tuza, 1990)

χ′s(G) = σ(G) if G is a tree.
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Cycles and complete graphs

Proposition

If n ≥ 3, then

χ′s(Cn) =


5 if n = 5;

3 if n is a multiple of 3;

4 otherwise.

Proposition

If n ≥ 2, then χ′s(Kn) = n(n−1)
2 .
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Jellyfish graphs

For a graph H, the H-jellyfish H(pv : v ∈ V (H)) is the

graph obtained from H by adding pv new vertices adjacent to

v for each vertex v in H.

An edge which is joining a new vertex to v is called a

pendent edge at v.
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Jellyfish graphs

A block-jellyfish of a graph G is the H-jellyfish H ′ for some

block H of G, where the new vertices of H ′ are all vertices of

V (G)− V (H) having exactly one neighbor in V (H).

A block-jellyfish is trivial if it is an H-jellyfish for an end

block H which is K2, otherwise it is non-trivial.
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Jellyfish graphs

Theorem

Suppose G is a connected graph that is not a star. If G has

exactly r non-trivial block-jellyfishes G1, G2, . . . , Gr, then

χ′s(G) = max
1≤i≤r

χ′s(Gi).

Corollary

If G is a block graph, then χ′s(G) = max{|E(H)| : H is a

non-trivial block-jellyfish of G}.
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Theorem

If G is a Cn-jellyfish of m edges with σ(G) ≥ 4, then χ′s(G) =

m, if n = 3;

σ(G) + 1, if n = 4;

d m
bn/2ce, o.w., if n is odd with all dG(vi) = d but (n, d) 6= (7, 3),

or d m
bn/2ce ≥ σ(G) + 1;

σ(G) + 1, o.w., if (n, d) = (7, 3) with all dG(vi) = d,

or n 6≡ 0( mod 3) such that up to rotation

dG(vi) = σ(G)− 1 for i ≡ 1 ( mod 3)

with 1 ≤ i ≤ 3bn3 c − 2,

or (n, σ(G)) = (10, 4)

with dG(vi) = 3 for all odd or all even i;

σ(G), o.w..
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Definitions

An anti-matching is a set of edges in which every two

distinct edges are adjacent or are adjacent to a same edges.

The closed edge-neighborhood of a clique C is the set

Ne[C] = {e ∈ E : e is incident to some vertex in C}.

The closed edge-neighborhood of an edge xy is the set

Ne[xy] = {e ∈ E : e is incident to x or y}.
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Definitions

The anti-matching number am(G) of a graph G is the

maximum size of an anti-matching.

σ∗(G) := max
C:clique

|Ne[C]| = max
C:clique

(∑
x∈C

dG(x)−
(|C|

2

))
σ(G) := max

xy∈E
|Ne[xy]| = max

xy∈E
(dG(x) + dG(y)− 1).
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Weak duality inequalities

σ(G) ≤ σ∗(G) ≤ am(G) ≤ χ′s(G).

Lemma

If G has no clique of size 3 in which each vertex is of degree at

least 3, then σ(G) = σ∗(G).

Theorem (Liao, 2012)

If G is a cactus in which the length of a cycle is a multiple of 6,

then χ′s(G) = σ(G).

Corollary (Faudree, Gyárfás, Schelp and Tuza, 1990)

If T is a tree, then χ′s(T ) = σ(T ).
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Weak duality inequalities

σ(G) ≤ σ∗(G) ≤ am(G) ≤ χ′s(G).

Theorem (Cameron, 1989)

If G is chordal, then χ′s(G) = σ∗(G).

A graph G is weakly chordal if neither the graph nor its

complement contains an induced cycle of length at least five

in G.

Theorem (Cameron, Sritharan and Tang, 2003)

If G is weakly chordal, then χ′s(G) = am(G).
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Perfection

For any t ∈ {σ, σ∗, am}, a graph G is vertex t-perfect

(respectively, edge t-perfect) if t(H) = χ′s(H) for any

induced (respectively, edge-induced) subgraph H of G.

See the following flowchart for a summary.

edge σ-perfect ⇒ edge σ∗-perfect ⇒ edge am-perfect

⇓ ⇓ ⇓

vertex σ-perfect ⇒ vertex σ∗-perfect ⇒ vertex am-perfect
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Perfection

Corollary

If G is a cactus in which the length of a cycle is a multiple of 6 or

a forest, then G is edge t-perfect and vertex t-perfect for

t ∈ {σ, σ∗, am}.

Corollary

Chordal graphs are vertex σ∗-perfect and vertex am-perfect.
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Perfection

Corollary

Chordal graphs without any clique of size 3 in which each vertex is

of degree at least 3 are vertex t-perfect for t ∈ {σ, σ∗, am}.

Corollary

Weakly chordal graphs are vertex am-perfect.
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Graphs with cycle lengths of multiple 3

Theorem

If G is a 2-connected graph in which the length of every cycle is a

multiple of 3, then χ′s(G) = σ(G).

Conjecture

2-connected graphs in which the length of every cycle is a multiple

of 3 are vertex σ-perfect.
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Roman domination

The articles by ReVelle (1997) in the Johns Hopkins

Magazines suggested a new variation of domination called

Roman domination

A region of the Roman empire is considered to be unsecured if

it has no mobile Field Armies (FA) stationed there and

secured otherwise.
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Roman domination

In the 4th century A.D., Constantine the Great (Emperor of

Rome) issued a decree that a FA cannot be sent from a

secured region to an unsecured region if doing so leaves that

region unsecured.

Thus, there are two types of armies, stationary and traveling.
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Roman domination

Each vertex (city) has no army must have a neighboring

vertex with a traveling army.

Stationary armies then dominate their own vertices, and a

vertex with two armies is dominated by its stationary army,

and its open neighborhood is dominated by the traveling army.
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Roman domination

We may formulate the problem in terms of graphs.

A Roman dominating function of a graph G is a function

f : V (G)→ {0, 1, 2} such that every vertex v with f(v) = 0

is adjacent to some vertex u with f(u) = 2.
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Roman domination

The weight of a Roman dominating function f is the value

w(f) =
∑

v∈V (G) f(v).

The Roman domination number of G, denoted by γR(G), is

the minimum weight of a Roman dominating function of G.
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Edge Roman domination

Recently, Roushini Leely Pushpam and Malini Mai (2009)

initiated the study of the edge version of Roman domination.

An edge Roman dominating function of a graph G is a

function f : E(G)→ {0, 1, 2} such that every edge e with

f(e) = 0 is adjacent to some edge e′ with f(e′) = 2.
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Edge Roman domination

The weight of an edge Roman dominating function f is the

value w(f) =
∑

e∈E(G) f(e).

The edge Roman domination number of G, denoted by

γ′R(G), is the minimum weight of an edge Roman dominating

function of G.
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Edge Roman domination

In fact, the edge Roman domination number of G equals the

Roman domination number of its line graph.

However, we are interesting in finding upper bound of γ′R(G)

in terms of |V (G)| instead of |E(G)|.
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Known results

Roushini Leely Pushpam et al. (2009):

γ′R(Pn) = b2n
3
c and γ′R(Cn) = d2n

3
e.

Akbari et al.: γ′R(G) ≤ 2∆
2∆+1n.

Conjecture (∆-conjecture, Akbari et al.)

If G is a graph of maximum degree ∆ on n vertices, then

γ′R(G) ≤ d ∆
∆+1ne.
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Known results

Akbari, Ehsani, Ghajar, Khalilabadi and Sadeghabad:

If G has a perfect matching, then γ′R(G) ≤ 2∆−1
2∆ n.

If T is a tree of n vertices, then

d2(n− `(T ) + 1)

3
e ≤ γ′R(T ) ≤ d2(n− 1)

3
e = b2n

3
c

where `(T ) is the number of leaves, and the equality holds if

and only if T = Pn.
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Known results

Akbari, Ehsani, Ghajar, Khalilabadi and Sadeghabad:

If n ≥ 2, then γ′R(P2�Pn) = d4n
3 e and γ′R(P3�Pn) = 2n.

If n ≥ 1, then γ′R(Qn) ≥ 2n+1n
3n−1 .
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Known results

Akbari and Qajar:

If G is outerplanar, then γ′R(G) ≤ 4
5n.

If G is planar and claw-free, then γ′R(G) ≤ 6
7n.

Conjecture

If G is a planar graph of n vertices, then γ′R(G) ≤ 6
7n.
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Known results

Theorem

If 1 ≤ r ≤ s, then γ′R(Kr,s) = 2r for r < s and γ′R(Kr,s) = 2r − 1

for r = s.

γ′R(Kr,r) = 2r − 1 = 2∆−1
2∆ n, while the gap between 2∆−1

2∆ n

and ∆
∆+1n being ∆−1

2∆(∆+1)n.

γ′R(Kr,r+1) = 2r = 2∆−2
2∆−1n, while the gap between 2∆−2

2∆−1n

and ∆
∆+1n is ∆−2

(∆+1)(2∆−1)n.
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Gr,t

Consider the graph Gr,t obtained from t copies of Kr,r+1 by

adding edges yir+1y
i+1
1 for 1 ≤ i ≤ t with yt+1

1 = y1
1, where

the partite sets of the i-th Kr,r+1 are Xi = {xi1, xi2, . . . , xir}

and Yi = {yi1, yi2, . . . , yir+1}.

To get counterexamples, we modify complete bipartite graphs

to obtain graphs whose ∆ are far away from n.
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Gr,t

G2,4

Figure : The graph G2,4.

72 / 196



Strong Edge Coloring
Edge Roman Domination

Power Roman Domination

Introduction
Counterexamples to ∆-conjecture
k-degenerate, subcubic graphs
Graphs on surfaces of small genus, withoutK2,3-subdivisions

Counterexamples to ∆-conjecture

Conjecture (∆-conjecture, Akbari et al.)

If G is a graph of maximum degree ∆ on n vertices, then

γ′R(G) ≤ d ∆
∆+1ne.

γ′R(Gr,t) = 2rt = 2∆−2
2∆−1n >

∆
∆+1n = d ∆

∆+1ne when r ≥ 2 and

t a multiple of r + 2.

This disproves ∆-conjecture.
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Removable triple

A removable triple of a graph G is a triple (S,M2,M1),

where S is a nonempty subset of V (G) and M2 and M1 are

disjoint matchings in G[S] such that every edge

e ∈ E(G)−M1 incident to a vertex in S is adjacent to some

edge in M2.

We define the ratio ρ(S,M2,M1) of a removable triple

(S,M2,M1) to be 2|M2|+|M1|
|S| .
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Removable triple

Lemma

If a graph G has a removable triple (S,M2,M1) with

ρ(S,M2,M1) ≤ α, then γ′R(G) ≤ γ′R(G− S) + α|S|.

Lemma

For every removable triple (S,M2,M1) of G, if

γ′R(G− S) ≤ α|V (G− S)| but γ′R(G) > α|V (G)|, then

ρ(S,M2,M1) > α
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Removable triple

Lemma

If v is a vertex of degree d in a graph G and M is a matching in

G[N(v)], then G has a removable triple (S,M2,M1) with

|S| ≤ 2d+ 1 and

ρ(S,M2,M1) ≤ 2d− 2|M |
2d+ 1− 2|M |

≤ 2d

2d+ 1
.
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k-degenerate graph

Theorem

If G is a k-degenerate graph of n vertices, then γ′R(G) ≤ 2k
2k+1n.

Corollary

If T is a tree of n vertices, then γ′R(T ) ≤ 2
3n.

Corollary

If G is a outerplanar graph of n vertices, then γ′R(G) ≤ 4
5n.
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k-degenerate graph

Lemma

Let G be a graph of maximum degree ∆ of n vertices. If every

component of G contains a vertex of degree less than ∆, then

γ′R(G) ≤ 2∆−2
2∆−1n.

Theorem

If G is a connected graph of maximum degree ∆ on n vertices,

then γ′R(G) ≤ 2∆−2
2∆−1n+ 2

2∆−1 .

78 / 196



Strong Edge Coloring
Edge Roman Domination

Power Roman Domination

Introduction
Counterexamples to ∆-conjecture
k-degenerate, subcubic graphs
Graphs on surfaces of small genus, withoutK2,3-subdivisions

Subcubic graphs

Recall that Akbari showed that γ′R(G) ≤ 6
7n for every

subcubic graph G of n vertices.

Theorem

If G is a subcubic graph of n vertices contains no K3,3 as a

component, then γ′R(G) ≤ 4
5n.

79 / 196



Strong Edge Coloring
Edge Roman Domination

Power Roman Domination

Introduction
Counterexamples to ∆-conjecture
k-degenerate, subcubic graphs
Graphs on surfaces of small genus, withoutK2,3-subdivisions

Graphs on surfaces of small genus

Conjecture (Akbari and Qajar)

If G is a planar graph of n vertices, then γ′R(G) ≤ 6
7n.

Theorem

If G is a graph of n vertices that can be embedded in the plane or

the projective plane, then γ′R(G) ≤ 6
7n.
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Graphs on surfaces of small genus

Sketch of proof:

Every vertex of G has degree at least four.

Discharging method: For every x ∈ V (G) ∪ F (G), we define

the charge ch(x) on x to be deg(x)− 4.

According to Euler’s formula, the sum of the charge is

∑
v∈V (G)

(deg(v)−4)+
∑

f∈F (G)

(deg(f)−4) = −4|V |+4|E|−4|F | < 0.
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Graphs on surfaces of small genus

Sketch of proof:

For every vertex v incident to exactly t 3-faces with t > 0, we

move deg(v)−4
t units of charge to each 3-face incident to it.

We denote the new charge on each x ∈ V (G) ∪ F (G) by

ch′(x). Clearly,
∑

x∈V (G)∪F (G) ch(x) =
∑

x∈V (G)∪F (G) ch′(x).

We shall prove that ch′(x) ≥ 0 for every x ∈ V (G) ∪ F (G).
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Graphs on surfaces of small genus

Theorem

Let Σ be the plane, projective plane, torus or Klein bottle. If G is

a graph of girth at least 5 on n vertices that can be embedded in

Σ, then γ′R(G) ≤ 4
5n.

Conjecture

If G is a planar graph of girth at least 3k + 2 on n vertices, then

γ′R(G) ≤ 2k+2
3k+2n.
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Graph without K2,3-subdivisions

Lemma

A graph G is an outerplanar graph if and only if G does not

contain a subgraph isomorphic to a subdivision of K4 or K2,3.

Theorem

Let G be a graph of n vertices that does not contain a subgraph

isomorphic to a subdivision of K2,3. If G does not contain C5 as a

component and there does not exist a vertex v such that G− v

contains C5 as a component, then γ′R(G) ≤ 3
4n.
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Roman domination

Recall that Roman domination in graphs is a variation of

domination suggested implicitly by (1997) and Stewart (1999).

A Roman dominating function (RDF) of a graph G is a

function f : V (G)→ {0, 1, 2} such that every vertex v with

f(v) = 0 has a neighbor u with f(u) = 2.

The weight of f is w(f) =
∑

v∈V (G) f(v).
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Roman domination

The Roman domination number of G, γR(G), is the minimum

of w(f) over all such functions.

The Roman domination problem is to determine an RDF of

weight γR(G) of graph G.
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Roman domination

Cockayne, Dreyer, Hedetniemi and Hedetniemi:

γ(G) ≤ γR(G) ≤ 2γ(G), and that γ(G) = γR(G) if and only

if G has no edges, where γ(G) is the domination number of G.

γR(G) ≤ 2n
δ(G)+1(ln δ(G)+1

2 + 1) for a graph G of order n and

minimum degree δ(G).
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Roman domination

Chambers et al. (2009) proved that γR(G) ≤ 4n
5 when n ≥ 3

and δ(G) ≥ 1, and γR(G) ≤ 8n
11 when n ≥ 9 and δ(G) ≥ 2.

Liu and Chang (2012) showed that γR(G) ≤ 2n
3 when

δ(G) ≥ 3 and γR(G) ≤ max{d2n
3 e,

23n
34 } when G is

2-connected.
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Roman domination

Liedloff et al. (2008) presented linear-time algorithms on

interval graphs and on co-graphs, and established a

polynomial-time algorithm on AT-free graphs.

Liu and Chang (2013) proposed a linear-time algorithm for the

weighted (a, b)-Roman domination problem with b ≥ a > 0 on

strongly chordal graphs, and showed that the decision version

of the Roman domination problem is NP-complete on

bipartite graphs and on split graphs.
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power Roman domination

We assume that a vertex v with i(> 0) FAs stationed can

power-dominate all the vertices that have distance within

i− 1 from v.

More specifically, for a fixed positive integer k ≥ 2, a k-power

Roman dominating function (kPRDF) of a graph G is a

function f : V (G)→ {0, 1, 2, . . . , k} such that for every

vertex v with f(v) = 0, there exists a vertex u with f(u) > 0

and the distance between u and v in G is less than f(u).
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power Roman domination

The weight of f is w(f) =
∑

v∈V (G) f(v).

The k-power Roman domination number of G, γPR,k(G),

is the minimum of w(f) over all such functions.

The k-power Roman domination problem is to determine a

kPRDF of weight γPR,k(G) of graph G.
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power Roman domination

The special case when k = 2 is the ordinary Roman

domination.

In other words, γPR,2(G) = γR(G) for any graph G.
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Properties

A universal vertex is a vertex adjacent to all other vertices in

the graph.

Proposition

Let G be a graph of order at least 2. Then γPR,k(G) = 2 if and

only if G = 2K1 or has a universal vertex, for any integer k ≥ 2.
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Properties

Proposition

Let f = (V0, V1, V2, . . . , Vk) be a γPR,k(G)-function. Then

1 G[Vi] is an independent set for all i ≥ 2 with i+ 1 ≤ k.

2 No edge of G joins V1 and Vi for all i ≥ 2.

3 Each vertex of V0 is adjacent to at most two vertices of V1.

4 V0 ∪ V2 ∪ V3 ∪ · · · ∪ Vk is a γ-set of

Gk−1[V0 ∪ V2 ∪ V3 ∪ · · · ∪ Vk].
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Properties

Proposition

Let f = (V0, V1, . . . , Vk) be a γPR,k(G)-function that maximizes |V0|.

1 V1 is an independent set.

2 V0 ∪ V2 ∪ V3 ∪ · · · ∪ Vk is a vertex cover of G.

3 Each vertex of V0 is adjacent to at most one vertex of V1, i.e., V1 is

a packing.

4 V0 is a dominating set of G[V0 ∪ V1] if G has no isolated vertices.

5 If u ∈ Vi, v ∈ Vj for some i, j ∈ {1, 2, . . . , k − 1} and i+ j ≤ k,

then dG(u, v) > i+ j.

6 If u ∈ Vi, v ∈ Vj for some i, j ∈ {1, 2, . . . , k − 1} i+ j > k, then

dG(u, v) > 2k − i− j.
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General bounds

Proposition

For any graph G and a spanning subgraph H of G,

γPR,k(G) ≤ γPR,k(H)

for any positive integer k.

Theorem

For any connected graph G of order n and rad(G) = r,

r + 1 = · · · = γPR,r+1(G) ≤ · · · ≤ γPR,2(G) ≤ γPR,1(G) = n.
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General bounds

Proposition (Cockayne et al., 2004)

For any graph G, γ(G) ≤ γPR,2(G) ≤ 2γ(G).

Proposition

For any graph G,

γ(Gk−1) ≤ γPR,k(G) ≤ 2γ(G)

for any integer k ≥ 3. Moreover, γ(Gk−1) = γPR,k(G) if and only

if G = Kn.
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General bounds

Proposition (Cockayne et al., 2004)

For any graph G of order n and ∆(G) = ∆,

2n

∆ + 1
≤ γPR,2(G).

Theorem

For any graph G of order n and ∆(G) = ∆ ≥ 3,

(∆− 2)kn

∆(∆− 1)k−1 − 2
≤ γPR,k(G)

for any integer k ≥ 2. Moreover, the inequality holds if and only if

G has a disjoint union of full ∆-ary trees as a spanning subgraph.
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General bounds

Proposition (Cockayne et al., 2004)

For a graph G of order n,

γPR,2(G) ≤ 2 + 2 ln((1 + δ(G))/2)

1 + δ(G)
n.

Theorem

For any graph G of order n and δk(G) = δk,

γPR,k(G) ≤ k

δk−1 + 1

(
ln
δk−1 + 1

k
+ 1

)
n

for any integer k ≥ 2.
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Complete multipartite graphs

Proposition

For the complete graph Kn,

γPR,k(Kn) =

 1, if n = 1;

2, if n ≥ 2,

for any integer k ≥ 2.

Proposition

For the complete multipartite graph Kr1,r2,...,rs , s ≥ 2,

γPR,k(Kr1,r2,...,rs) = min{r1 + 1, r2 + 1, . . . , rs + 1, 4} for any

integer k ≥ 2.
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Paths and cycles

Proposition

For the path Pn and the cycle Cn,

γPR,k(Pn) = γPR,k(Cn) =

⌈
kn

2k − 1

⌉
for any positive integer k.
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2× n grid graphs

Proposition

For the 2× n grid graph G2,n,

γPR,3(G2,n) =

 3, if n = 3;

n+ 1−
⌊
n
4

⌋
, otherwise.
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2× n grid graphs
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Figure : Power Roman domination on grid graphs G2,n; 12 ≤ n ≤ 15,

k = 3.
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Cartesian products of two paths or two cycles

Theorem

For the Cartesian products of two paths or two cycles,

lim
m,n→∞

γPR,k(Pm�Pn)

mn
= lim

m,n→∞

γPR,k(Cm�Cn)

mn
=

k

2k2 − 2k + 1

for any positive integer k

Proposition

For any positive integers k,m and n,

γPR,k(C(2k2−2k+1)m�C(2k2−2k+1)n) = (2k2 − 2k + 1)kmn.
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Cartesian products of two paths or two cycles

3

3

3

3

3

3

3

3

3

3

3

3

3

Figure : Power Roman domination on a grid graph; k = 3
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Trees

Theorem (Chambers, 2009)

For a tree T of order n ≥ 3, γPR,2(T ) ≤ 4n
5 .

Theorem

For an positive integer k ≥ 2 and a tree T 6= P2` for some⌊
k+1

3

⌋
+ 1 ≤ ` ≤

⌊
2k+1

3

⌋
of order n ≥ 2

⌊
k+1

3

⌋
+ 1,

γPR,k(T ) ≤ k + 2

2k + 1
n.
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Trees

Corollary

For a tree T of order n ≥ 3 with T 6= P4,

γPR,3(T ) ≤ 5

7
n.

Corollary

For any connected graph G of order n ≥ 3 with G 6= P4,

γPR,3(G) ≤ 5

7
n.
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NP-completeness results

k-POWER ROMAN DOMINATION (kPRD)

INSTANCE: A graph G = (V,E) and positive integers k and s.

QUESTION: Does G have a kPRDF of weight ≤ s?

Theorem

For any fixed integer k ≥ 2, kPRD is NP-complete on chordal

graphs.

109 / 196



Strong Edge Coloring
Edge Roman Domination

Power Roman Domination

Introduction
Properties and bounds for general graphs
Special classes of graphs
NP-completeness and algorithmic results

NP-completeness results

Clique

Figure : kPRD instance in chordal graph, resulting from 3-SAT instance;

k = 3.
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NP-completeness results

Theorem

For any fixed integer k ≥ 3, kPRD is NP-complete on planar

bipartite graphs.

Corollary

For any fixed integer k ≥ 3, kPRD is NP-complete on planar

graphs.

Corollary

For any fixed integer k ≥ 3, kPRD is NP-complete on bipartite

graphs.
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NP-completeness results

Figure : kPRD instance in planar bipartite graph, resulting from 3-SAT

instance; k = 3.
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Strongly chordal graphs

A strong elimination ordering of a graph G = (V,E) is an

ordering v1, v2, . . . , vn of V such that

a ≤ b, c ≤ d, a ∼ c, a ∼ d and b ∼ c imply b ∼ d.

We now generalize this elimination ordering involving the

“distance neighborhood”.
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Strongly chordal graphs

Given a fixed positive integer k, a k-universal elimination

ordering is an ordering v1, v2, . . . , vn of V such that

a ≤ b, c ≤ d, a j∼ c, a j∼ d and b
j∼ c imply b

j∼ d

(k-UEO)

for all integers 1 ≤ j ≤ k, where the notation a
j∼ b means

va ∈ N j
G[vb]. In other words, a k-UEO for G is a SEO for Gj

for each 1 ≤ j ≤ k.
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Strongly chordal graphs

For a fixed positive integer k, let Gk denote the set of all

graphs that admit a k-UEO.

Let SC denote the set of all strongly chordal graphs.

Theorem

For any fixed positive integer k, Gk = SC.
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Algorithm on strongly chordal graphs

(LSR)

minimize
k∑

`=1

n∑
i=1

`ωix`,i,

subject to x`,i ≥ 0 ∀ 1 ≤ ` ≤ k, ∀ 1 ≤ i ≤ n, (LSR1)

k∑
`=1

∑
vi∈N`−1

G [vj ]

x`,i ≥ 1 ∀ j. (LSR2)
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Algorithm on strongly chordal graphs

(DSR)

maxmize
n∑

j=1

yj ,

subject to
∑

vj∈N`−1
G [vi]

yj ≤ `wi ∀ 1 ≤ ` ≤ k, 1 ≤ i ≤ n, (DSR1)

yj ≥ 0 for all j. (DSR2)
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Algorithm on strongly chordal graphs

Algorithm PRSC (Power Roman domination for strongly chordal graphs)

Input: A strong chordal graph G with a (k − 1)-strong elimination

ordering v1, v2, . . . , vn and nonnegative vertex weights

w1, w2, . . . , wn.

Output: Optimal solution xl.i, yj to (LSR) and (DSR) where (xl,i)’s are

mutually orthogonal (0, 1)-vectors.

stage 1: each xl,i ← 0, each yj ← 0; unmark all vi;

stage 2: for j = 1 to n do

yj ← min{wj , lwi −
∑

vs∈Nl−1[vi]
ys :

vi ∈ Nl−1[vj ], 2 ≤ l ≤ k};
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Algorithm on strongly chordal graphs

Algorithm PRSC (Power Roman domination for strongly chordal graphs)

stage 3: for i = n to 1 step -1 do

for l = k to 2 step -1 do

if lwi =
∑

vs∈Nl−1[vi]
ys and there is no marked

vs ∈ Nl−1[vi] with ys > 0

then xl,i ← 1 and mark all vertices in Nl−1[vi], berak;

stage 4: for j = 1 to n do

if vj is unmarked then x1,j ← 1.
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Algorithm on strongly chordal graphs

Theorem

Algorithm PRSC finds the minimum weighted k-power Roman

domination number of a strongly chordal graph G with

nonnegative vertex weights in time O(kn∆k(G)) with a

(k − 1)-universal elimination ordering provided.
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Edge cover

The distance dist(e, v) between an edge e and a vertex v in a

graph is the length of a shortest path between them.

The vertex-neighbors within distance k denotes

Nk(e) = {v : dist(e, v) ≤ k}.
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Edge cover

An edge cover of a graph is a set of edges such that every

vertex of the graph is incident to at least one edge of the set.

That is, C ⊆ E is an edge cover if

⋃
e∈C

N0(e) = V (G).

The edge covering number β′(G) is the minimum size of

edge cover.
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k-distance Edge cover

Next, we would generalize the definition, the edge partition

C = (E0, E1, . . . , Ek) is an k-distance edge cover if

k⋃
i=1

( ⋃
e∈Ei

Ni−1(e)
)

= V (G).

It is easy to see that an edge cover is an 1-distance edge cover.

124 / 196



k-Distance Edge Cover
Nowhere-zero Flow and Modular Orientation

Relaxation Procedure

Introduction
General properties and bounds
Special classes of graphs
NP-completeness results

k-distance Edge cover

The weight of an k-distance edge cover is the sum

w(C) =
∑k

i=1 i|Ei|.

The minimum weight is called an k-distance edge covering

number β′k(G).
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General properties

Proposition

For any graph G, if H is a spanning subgraph of G, then

β′k(G) ≤ β′k(H) for each k.

Proposition

If G has a perfect matching M , then β′2(G) ≤ |V (G)|
2 .

Proposition

If M is a matching of G, then β′2(G) ≤ n− |M |.
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General properties

Proposition

For any k ≥ 1, β′k(G) ≥ 2 if |E(G)| ≥ 2.

Proposition

For any k ≥ 2. Let G be a graph with |E(G)| ≥ 2, β′k(G) = 2 if

and only if G = 2K2 or there exists an edge xy such that

N(x) ∪N(y) = V (G).
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General Inequality

The edge-vertex-diameter diam′(G) is

max
e∈E(G),v∈V (G)

dist(e, v).

The vertex-eccentricity of an edge e, written ecc′(e), is

max
v∈V (G)

dist(e, v)

The edge-vertex-radius of a graph G, written rad′(G), is

min
e∈E(G)

ecc′(e).
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General Inequality

Theorem

Let r′ be the edge-vertex-radius of a connected graph G, then

β′1(G) ≥ β′2(G) ≥ · · · ≥ β′r′+1(G) = β′r′+2(G) = · · · = r′ + 1.
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Lower bounds

Theorem

For any graph G of order n and maximum degree ∆ ≥ 3,

β′k(G) ≥ (∆− 2)kn

2(∆− 1)k − 2
.
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Cycles, paths and complete graphs

Proposition

For any k ≥ 1, β′k(Pn) = β′k(Cn) = bn+1
2 c.

Proposition

For any k ≥ 2, β′k(Kn) = 2 if n ≥ 3.
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Complete multipartite graphs

Proposition

For any k ≥ 2, β′k(Km,n) = 2 if (m,n) 6= (1, 1).

Proposition

For any k ≥ 2, β′k(Kr1,r2,...,rs) = 2 if s > 3 or maxi ri > 1.
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Trees

Let Ja,b be a graph which is formed by a root vertex r

adjacent with a isolated vertices and b claws (connect to the

leave of each claw).

Lemma

If one component of T − e is an odd path or isolated vertex for any

edge e ∈ E(T ), then either T is a path with five vertices, a claw

adding three pendent vertices on its leaves, or a graph Ja,b for

some nonnegative a, b.
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Trees

Figure : The graph Ja,b.
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Trees

Theorem

For k ≥ 3, if T is not an odd path, then β′k(T ) ≤ n(T )
2 .

Theorem

For k = 2, β′2(T ) ≤ 2
3n(T ) and the equation holds if and only if

T = P3.
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Cartesian product of graphs

Theorem

For k ≥ 1, lim
m,n→∞

β′k(Pm�Pn)
mn = lim

m,n→∞
β′k(Cm�Cn)

mn = 1
2k .

Theorem

For k ≥ 1, β′k(C2km�C2kn) = 2kmn.
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NP-completeness results

k-DISTANCE EDGE COVER

INSTANCE: A graph G = (V,E) and positive integers k, s ≤ |V |.

QUESTION: Does G have an k-distance edge cover C with

w(C) ≤ s?

Theorem

For any k ≥ 2, the decision problem k-DISTANCE EDGE COVER

is NP-complete for chordal graphs.
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NP-completeness results

Figure : A transformation to a chordal graph. 138 / 196
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NP-completeness results

Theorem

For any k ≥ 2, the decision problem k-DISTANCE EDGE COVER

is NP-complete for planar bipartite graphs.

Corollary

k-DISTANCE EDGE COVER is NP-complete for planar graphs.

Corollary

k-DISTANCE EDGE COVER is NP-complete for bipartite graphs.
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NP-completeness results

Figure : A transformation to a planar bipartite graph.
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Definitions

Assume G = (V,E) is an undirected graph and D is an

orientation of E(G).

For a vertex v ∈ V (G), let E+(v) (E−(v), resp) denote the

set of directed edges with their tails (heads, resp) at the

vertex v.
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Definitions

Suppose Γ is an abelian group.

A Γ-flow of an undirected graph G is an ordered pair (D, f)

where D is an orientation of E(G) and f : E(G) −→ Γ such

that ∑
e∈E+(v)

f(e)−
∑

e∈E−(v)

f(e) = 0

for all v ∈ V (G).
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Definitions

An integer flow (D, f) is a Z-flow of G.

An integer k-flow (or, simply k-flow) of G is an integer flow

(D, f) such that |f(e)| < k for all e ∈ E(G).

An Γ-flow (D, f) of G is nowhere-zero if f(e) 6= 0 for all

e ∈ E(G).
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Nowhere-zero k-flows

The concept of integer flow was introduced by Tutte (1949)

as a refinement and a generalization of coloring problem of

planar graphs.

If G has an edge-cut, then it is impossible that G has a

nowhere-zero k-flow for any k ≥ 2, hence bridgeless is

necessary.
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Nowhere-zero k-flows

Proposition (Tutte, 1956)

A graph G has a nowhere-zero 2-flow if and only if the degree of

each vertex is even.

Theorem (Seymour, 1981)

Every bridgeless graph has a nowhere-zero 6-flow.
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Nowhere-zero k-flows

Conjecture

(5-flow Conjecture, Tutte, 1956) Every bridgeless graph admits a

nowhere-zero 5-flow.

Conjecture

(4-flow Conjecture, Tutte, 1966) Every bridgeless graph containing

no subdivision of the Petersen graph admits a nowhere-zero 4-flow.

Conjecture

(3-flow Conjecture, Steinberg, 1976) Every bridgeless graph

containing no 3-edge-cut admits a nowhere 3-flow.
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Modular k-orientation

An orientation D of G is called a modular k-orientation if

d+
D(v) ≡ d−D(v) (mod k)

for each vertex x ∈ V (G).

The concept of modular orientation is introduced by Jaeger

(1988).
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Modular k-orientation

For k even, the situation is completely known.

Proposition

Let t be a positive integer. The following statements are

equivalent.

1 G has a modular (2t)-orientation;

2 G is an Euler cycle.

149 / 196



k-Distance Edge Cover
Nowhere-zero Flow and Modular Orientation

Relaxation Procedure

Introduction
Splitting-off lemmae
Modular β-orientation
Group flows

Modular k-orientation

Proposition

The following statements are equivalent.

1 G has a modular (2t+ 1)-orientation;

2 G has a Z2t+1-flow (D1, f1) such that f1(e) = ±1 for each

edge e ∈ E(G);

3 G has an integer flow (D2, f2) such that

f2(e) ∈ {±t,±(t+ 1)} for each edge e ∈ E(G);

4 G has an orientation D3 such that

t

t+ 1
≤ |[A,B]D3 |
|[B,A]D3 |

≤ t+ 1

t

for every partition {A,B} of V (G).
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Modular k-orientation

Conjecture (Jaeger, 1988)

Let k ≥ 3 be an odd integer. Every (2k − 2)-edge connected graph

has a modular k-orientation.

Jaeger’s circular flow conjecture.

It implies 3-flow, 5-flow conjecture.
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Splitting-off lemma

Lemma (Splitting-off Lemma)

Suppose G = (V + s, E) is a graph such that s has even degree

and deg(s) ≥ 2. Assume that

for each nonempty proper vertex subset U of V (G) : d(U) ≥ k

where k ≥ 2. Then for every edge su ∈ E(G) there exists an edge

sv ∈ E(G) such that in the graph G′ = (V + s, E \ {su, sv} ∪ {uv}),

for each nonempty proper vertex subset U of V (G) : d′(U) ≥ k.
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Splitting-off lemma

Theorem

Suppose G = (V + s, E) is a graph such that deg(s) = k + 2 for

some k ≥ 2. Assume that

for each nonempty proper vertex subset U of V (G) : d(U) ≥ k

where k ≥ 2. Then there exists two edges su, sv ∈ E(G) such

that in the graph G′ = (V + s, E \ {su, sv} ∪ {uv}),

for each nonempty proper vertex subset U of V (G) : d′(U) ≥ k.
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Splitting-off lemma

Corollary

Suppose G = (V,E) is k-edge-connected and deg(s) ≥ k + 2 for

some vertex s ∈ V (G). Then there exists u, v ∈ N(s) such that let

G′ = (V + s, E \ {su, sv} ∪ {uv}), G′ is also k-edge-connected.

Corollary

If G is the minimum counterexample to 3-flow conjecture, then G

is 4-edge-connected and 5-regular.

Corollary

If G is the minimum counterexample to 5-flow conjecture, then G

is 2-edge-connected and 3-regular. 154 / 196
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Modified Splitting-off lemma

Lemma (Modified Splitting-off Lemma)

Suppose G = (V + s, E) is a graph such that s has even degree

and deg(s) ≥ 2. Assume that t /∈ N(s) and

for each nonempty proper vertex subset U 6= {t} : d(U) ≥ k

where k ≥ 2. Then for every edge su ∈ E(G) there exists an edge

sv ∈ E(G) such that in the graph G′ = (V + s, E \ {su, sv} ∪ {uv}),

for each nonempty proper vertex subset U 6= {t} : d′(U) ≥ k.
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Modified Splitting-off lemma

Theorem

Suppose G = (V + s+ t, E) is a k-edge-connected graph.

(i) If deg(s) = 2l for some l ∈ N, then there exists

G′ = (V + t, E − {sui}2li=1 ∪ {u2j−1u2j}lj=1)

where u1, u2, . . . , u2l ∈ N(s) such that G′ is k-edge-connected.
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Modified Splitting-off lemma

Theorem (cont.)

(ii) If st ∈ E(G), deg(s) = 2l + 1 and deg(t) > k, then there exists

G′ = (V + t, E − {st} − {sui}2li=1 ∪ {u2j−1u2j}lj=1)

where u1, u2, . . . , u2l ∈ N(s) \ {t} such that G′ is k-edge-connected.

(iii) If st ∈ E(G), deg(s) = 2l+ 1 and deg(t) = 2m+ 1, then there exists

G′ = (V,E−{st}−{sui}2li=1−{tvi}2mi=1∪{u2j−1u2j}lj=1∪{v2j−1v2j}mj=1)

where u1, u2, . . . , u2l ∈ N(s) \ {t} and v1, v2, . . . , v2m ∈ N(t) \ {s} such

that G′ is k-edge-connected.
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Modified Splitting-off lemma

The concept modular k-orientation can be generalized into

modular β-orientation.

A vertex mapping β : V (G)→ Zk is called a Zk-boundary if∑
v∈V (G) β(v) ≡ 0 (mod k). And an orientation D of G is

called a modular β-orientation if, for every vertex v ∈ V (G),

d+
D(v)− d−D(v) ≡ β(v) (mod k).
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Modified Splitting-off lemma

Theorem

Suppose G = (V + s+ t, E) is a graph.

(i) Let G′ = (V + s+ t, E − st). If G′ has a modular β-orientation

for all β, then G has a modular β-orientation for all β.
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Modified Splitting-off lemma

Theorem (cont.)

(ii) Assume deg(s) = 2l for some l ∈ N. Let

G′ = (V + t, E − {sui}2li=1 ∪ {u2j−1u2j}lj=1)

where N(s) = {u1, u2, . . . , u2l}. If G′ has a modular β-orientation

for all β, then G has a modular β-orientation with prescribed

β(s) = 0.
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Modified Splitting-off lemma

Theorem (cont.)

(iii) Assume st ∈ E(G), deg(s) = 2l + 1 and deg(t) > k. Let

G′ = (V + t, E − {st} − {sui}2li=1 ∪ {u2j−1u2j}lj=1)

where N(s) = {t, u1, u2, . . . , u2l}. If G′ has a modular

β-orientation for all β, then G has a modular β-orientation for all

β with prescribed β(s) 6= 0.
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Modified Splitting-off lemma

Theorem (cont.)

(iv) Assume st ∈ E(G), deg(s) = 2l + 1 and deg(t) = 2m+ 1.

Let

G′ = (V,E−{st}−{sui}2li=1−{tvi}2mi=1∪{u2j−1u2j}lj=1∪{v2j−1v2j}mj=1)

where N(s) = {t, u1, u2, . . . , u2l} and N(t) = {s, v1, v2, . . . , v2m}.

If G′ has a modular β-orientation for all β, then G has a modular

β-orientation for all β with prescribed β(s) = −β(t) 6= 0.
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τ -function

The idea originated from Thomassen (2012) who proved that

every 8-edge-connected graph has a nowhere-zero 3-flow.

Suppose β is a Zk-boundary, define the mapping

τ : V (G)→ {0,±1,±2, . . . ,±k} such that for each vertex

x ∈ V (G),

τ(x) ≡

 β(x) (mod k),

deg(x) (mod 2).
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τ -function

Note that, if β(x) = 0 and deg(x) is odd, τ(x) has two

possible values k or −k, we do not determine yet.

Moreover, for other cases,

τ(x) ≡

 β(x) if deg(x)− β(x) is even,

β(x)− k if deg(x)− β(x) is odd.
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τ -function

The mapping τ can be extended to any nonempty vertex

subset A with respect to β(A) ≡
∑

x∈A β(x) and

d(A) = |[A,Ac]|.

The extended mapping τ : P(V (G))→ {0,±1,±2, . . . ,±k}

is defined as follows, for each non-empty A ⊆ V (G),

τ(A) ≡

 β(A) (mod k)

d(A) (mod 2),

where P(V (G)) is the power set of V (G).
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τ -function

Proposition

Let A be a vertex subset of G, and a ∈ N. If d(A) ≥ 2a, then

d(A) ≥ (2a− k + 1) + |τ(A)|.

Proposition

Let A,B,C be three disjoint vertex subsets of G with

A ∪B ∪ C = V (G). Then

|τ(A)|+ |τ(B)| ≥ |τ(C)|.
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(p, q)-extendable

Let k ≥ 3 be an odd integer and p(k), q(k) be two integer

functions of k.

In practical use, p(k), q(k) are both even, hence we might

assume that both p(k) and q(k) are even.

G is (p(k), q(k))-extendable (or simply (p, q)-extendable) if

the following statement holds:
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(p, q)-extendable

For any Zk-boundary β and z0 ∈ V (G),

V0 = {v ∈ V (G)− z0 : τ(v) = 0}, and v0 is a vertex of V0 with

V0 6= φ. If

1 d(z0) ≤ p(k) + |τ(z0)| and

2 d(A) ≥ q(k) + |τ(A)| for any nonempty subset

A ⊆ V (G)− z0 with |V (G)−A| > 1 but A 6= {v0},

then any pre-orientation of E(z0) with d+(z0)− d−(z0) ≡ β(z0)

(mod k) can be extended to a β-orientation of G, that is,

d+(x)− d−(x) ≡ β(x) (mod k) for every vertex x ∈ V (G).
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(p, q)-extendable

Theorem

If every graph is (p(k), q(k))-extendable, then every

(q(k) + k − 1)-edge-connected graph has a modular β-orientation

for every Zk-boundary β of G.

Theorem (Lovász et al., 2013)

Every graph is (2k − 2, 2k − 2)-extendable.

Corollary (Lovász et al., 2013)

Every (3k − 3)-edge-connected graph has a modular β-orientation

for every Zk-boundary β of G.
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(p, q)-extendable

Theorem

If every graph is (p(k), q(k))-extendable, then p(k) ≤ q(k).

Figure : A non-(k + a+ 2, k + a)-extendable graph.
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(p, q)-extendable

Hence we focus on p(k) = q(k), we say G is q(k)-extendable if G

is (q(k), q(k))-extendable.

Theorem

If every graph is q(k))-extendable, then every

(q(k) + k − 1)-edge-connected graph has a modular β-orientation

for every Zk-boundary β of G.
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(p, q)-extendable

Conjecture

Every graph is (k + 1)-extendable.

Theorem (Lovász et al., 2013)

Every graph is (2k − 2)-extendable.
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(p, q)-extendable

Theorem

Let k ≥ 5 be an odd integer. If every graph is q(k)-extendable,

then q(k) ≥ 2d3k+1
4 e.

Figure : A non-( 3k−5
2 )-extendable graph. 173 / 196
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(F,Γ)-flow

Let F is a subset of additive abelian group Γ.

A flow is (F,Γ)-flow if all flow values are elements in F .

We define f(F,Γ) to be the minimum edge-connectivity of

(F,Γ)-flow as the smallest natural number such that every

f(F,Γ)-edge-connected (finite) graph G has a (F,Γ)-flow.
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(F,Γ)-flow

This concept is recently introduced by Thomassen (2014).

Theorem (Thomassen, 2014)

Let a1, a2, . . . , a2p, b1, b2, . . . , b2q+1 be elements in an additive

abelian group Γ such that

a1 + a2 + · · ·+ a2p = b1 + b2 + · · ·+ b2q+1.

Put k = 2p+ 2q + 1. If G is a graph with edge-connectivity at

least 3k − 1, then G has a flow whose flow values are in

{a1, a2, . . . , a2p, b1, b2, . . . , b2q+1}.
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(F,Γ)-flow

If |F | = 1, the element of F must have finite odd order.

In fact, an ({1},Zk)-flow is just a modular k-orientation.

Theorem (Thomassen, 2014)

Let k ≥ 3 be an odd integer. Then

2k − 2 ≤ f({1},Zk) ≤ 3k − 3.
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(F,Γ)-flow

Theorem (Thomassen, 2014)

Let Γ be an abelian group and F = Γ− {0}.

1 If |Γ| ≥ 6, then f(F,Γ) = 2.

2 If |Γ| = 5, then f(F,Γ) = 2 or f(F,Γ) = 4.

3 If |Γ| = 4, then f(F,Γ) = 4.

4 If |Γ| = 3, then f(F,Γ) = 4 or f(F,Γ) = 6.
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(F,Γ)-flow

Theorem

Let k ≥ 3 be an odd integer. Then 2k− 2 < f∗({1},Zk) ≤ 3k− 3.

Figure : A 2k − 2-edge-connected graph without modular β-orientation.178 / 196
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5-flow conjecture

Proposition (Jaeger, 1988)

If f({1},Z5) ≤ 9, then every bridgeless graph has a nowhere-zero

5-flow. Note that f∗({1},Z5) ≤ 9 implies f({1},Z5) ≤ 9.

Corollary

8 ≤ f({1},Z5) ≤ 12 and 9 ≤ f∗({1},Z5) ≤ 12.
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Circular-flow

Proposition

For every positive integer t, a graph G has a nowhere-zero circular

(2 + 1
t )-flow if and only if G has a modular (2t+ 1)-orientation.

Theorem (Lovász et al., 2013)

For every natural number t, every 6t-edge-connected graph has a

nowhere-zero circular (2 + 1
t )-flow.

Corollary

For every natural number t, every f({1},Z2t+1)-edge-connected

graph has a nowhere-zero circular (2 + 1
t )-flow.
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The pentagon game

An interesting game was proposed at International

Mathematical Olympiad in 1986.

The pentagon game: Five integers with positive sum are

assigned to the vertices of a pentagon. If there is at least one

negative number, the player can choose one of them, then

reverse the sign and add it to its two neighbors. The game

terminates when all numbers are nonnegative. Prove that the

pentagon game always terminates.
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The pentagon game

Figure : A pentagon game.
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Definitions

The game was generalized by Wegert and Reiher (2009) from

a pentagon to connected graphs.

Suppose G is a connected with V (G) = {v1, v2, . . . , vn}.

An n-tuple X = (x1, x2, . . . , xn) of real numbers is called a

configuration of G if each vertex vi in G is assigned with the

label xi, and suppose the sum s =
∑n

i=1 xi is positive.

184 / 196



k-Distance Edge Cover
Nowhere-zero Flow and Modular Orientation

Relaxation Procedure

Introduction
Final configuration and number of steps

Definitions

If there is a negative label xi, then a legal relaxation R(i) for

X is defined as the operation which transform X into

X ′ = XR(i) = (x′1, x
′
2, . . . , x

′
n) obtained from replacing xi by

−xi > 0 and add 2xi/di to each of the di neighbors of vi.

That is, x′i = −xi, x′j = xj + 2
di
xi for each vj adjacent to vi,

and x′k = xk for all other k.

Note that the sum s′ =
∑n

i=1 x
′
i =

∑n
i=1 xi = s is unchanged

and the connectedness of G can be omitted if we assume that

s > 0 holds in every component of the graph.

185 / 196



k-Distance Edge Cover
Nowhere-zero Flow and Modular Orientation

Relaxation Procedure

Introduction
Final configuration and number of steps

Relaxation Procedure

A relaxation procedure for X of G is a sequence of

configurations X = X0, X1, X2, . . . and a sequence of

relaxations R(k1), R(k2), . . . such that Xi = Xi−1R
(ki) for

i ≥ 1.

We say that a relaxation procedure terminates if all the

elements of Xt are nonnegative for some t, that is, there is no

legal relaxation for Xt.
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Relaxation Procedure

Theorem (Wegert and Reiher, 2009)

If G is a connected graph and X is an n-tuple of real numbers

with positive sum, then a relaxation procedure for X of G always

terminates.

Xt = XR(k1)R(k2) . . . R(kt) is called a final configuration of

the initial configuration X if all its elements are

nonnegative, and t is called the number of steps of the

relaxation procedure.
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Independence

Note that t and Xt may depend on the relaxation procedure.

Our goal is to characterize connected graphs for which the

final configurations and/or the numbers of steps are unique

for any initial configuration.
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Non-uniqueness

Lemma

If vi and vj are two adjacent vertices with deg(vi) deg(vj) 6= 1, 2, 4

in a connected graph G, then there exists an initial configuration

X and two relaxation procedures which both the final

configurations and the numbers of steps are different.
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Non-uniqueness

Sketch of proof:

If deg(vi) = 1 and deg(vj) = 3, then consider the initial

configuration X = (x1, x2, . . . , xn) with xi = −15, xj = −9,

and for k 6= i, j, xk is large enough to keep them positive

during the procedure.

Then observe the changing on (xi, xj):

(−15,−9)
R(i)

−→ (15,−39)
R(j)

−→ (−11, 39)
R(i)

−→ (11, 17)

but

(−15,−9)
R(j)

−→ (−21, 9)
R(i)

−→ (21,−33)
R(j)

−→ (−1, 33)
R(i1)

−→ (1, 31).
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Non-uniqueness

Sketch of proof (cont.):

If deg(vi) = p,deg(vj) = q with pq ≥ 5, then consider

X = (x1, x2, . . . , xn) with xi = −2p2q2, xj = −pq2, and for

k 6= i, j, xk is large enough to keep them positive during the

procedure.

Then observe the changing on (xi, xj):

(−2p2q2,−pq2)
R(i)

−→ (2p2q2,−5pq2)
R(j)

−→ (2p2q2 − 10pq, 5pq2)

(−2p2q2,−pq2)
R(j)

−→ (−2p2q2 − 2pq, pq2)

R(i)

−→ (2p2q2 + 2pq,−3pq2 − 4q)

R(j)

−→ (2p2q2 − 4pq − 8, 3pq2 + 4q).
191 / 196



k-Distance Edge Cover
Nowhere-zero Flow and Modular Orientation

Relaxation Procedure

Introduction
Final configuration and number of steps

Uniqueness

Notice that according to this lemma, all connected graphs,

except cycles Cn, paths Pn and K1,4, have more than one

final configuration and more than one number of steps for

some initial configuration.

Theorem (Alon, Krasikov and Peres, 1989)

If G = Cn is the n-cycle (n ≥ 3) with an initial configuration X,

then the number of steps and the final configuration of any

relaxation procedure are independent to the relaxation procedures.
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Uniqueness

Lemma

Suppose G is a graph where V (G) = {v1, v2, . . . , vn} with an

initial configuration X = (x1, x2, . . . , xn) with xi, xj < 0.

1 If vi is not adjacent to vj , then XR(i)R(j) = XR(j)R(i).

2 If vi is adjacent to vj and deg(vi) deg(vj) = 4, then

XR(i)R(j)R(i) = XR(j)R(i)R(j).

3 If vi is adjacent to vj and deg(vi) deg(vj) = 2, then

XR(i)R(j)R(i)R(j) = XR(j)R(i)R(j)R(i).
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Uniqueness

Theorem

If G = Cn (n ≥ 3), Pn (n ≥ 1) or K1,4 with an initial configuration

X, then the number of steps and the final configuration of any

relaxation procedure are independent to the relaxation procedures.
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Uniqueness

Corollary

The following statements are equivalent for any graph.

1 Each component of the graph is Cn, Pn or K1,4.

2 For any initial configuration X with positive sum in each

component, the number of steps is the same whatever

relaxation procedures take.

3 For any initial configuration X with positive sum in each

component, the final configuration is independent to the

relaxation procedure.
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Thanks for your attention.
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