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Introduction

Definitions

1. G = (V ,E ) be a connected graph but not K2.



Weight Choosability of theta Graphs

Introduction

Definitions

2. L(e) ⊆ R, a list of weights of e.
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Introduction

Definitions

3. L-edge weighting: f such that f (e) ∈ L(e).
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Introduction

Definitions

4. induced weight: g(v ) =
∑

uv∈E f (uv ).
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Introduction

Definitions

5. proper weighting: g(v ) 6= g(v ′).
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Introduction

Definitions

1. L(e) = {1, 2, ..., k}, f proper weighting
⇒ G is k-edge weight colorable.

2. L(e) ⊆ R, f proper weighting
⇒ G is k-edge weight choosable.
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Introduction

Problems

Conjecture (M.Karonski, T.Luczak, and A.Thomason)

([1]) Every connected graph G 6= K2 is 3-edge weight
colorable.

Conjecture (T.Bartnicki, J.Grytczuk, and S.Niwczykl)

([2]) Every connected graph G 6= K2 is 3-edge weight
choosable.
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Introduction

Recent Result

Theorem (M.Kalkowski, M.Karonski, and F.Pfender, 2010)

([8]) Every connected graph G 6= K2 is 5-edge weight
colorable.

Theorem (T.Bartnicki, J.Grytczuk, and S.Niwczyk1)

([2]) A clique, complete bipartite graph, or a tree, not K2, is
3-edge weight choosable.
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Introduction

Polynomials

1. Edge Set: E = {e1, e2, ..., em}.
2. Variables xe = f (e) ∈ L(e).
3. Associated polynomial of G of orientation D:

PG (x1, x2, ..., xm) =
∏

vv ′∈E(D)

(

∑

e=uv∈E

xe −
∑

e′=u′v ′∈E

xe′

)

6= 0
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Introduction

Example

Then the associated polynomial: PG (x1, x2, x3, x4, x5)

= (x4−x2−x5)(x1+x5−x3)(x2−x4−x5)(x3+x5−x1)(x1+x2−x3−x4).
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Introduction

Combinatorial Nullstellensatz

Theorem (N. Alon, 1999)

([3]) Let F be an arbitrary field, and let P(x1, x2, ..., xm) be
a polynomial in F[x1, x2, ..., xm]. Suppose that the coefficient
of xk1

1 xk2
2 ...xkm

m in P is non-zero and deg(P) =
∑m

i=1 ki . Then
for any subsets A1,A2, ...,Am of F satisfying |Ai | ≥ ki + 1 for
all i = 1, 2, ...,m, there exists
(a1, a2, ..., am) ∈ A1 × A2 × ...× An so that

P(a1, a2, ..., am) 6= 0.
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Introduction

Monomial Index

Define the monomial index by

mind(P) = min
M

h(M) = min
M

max
1≤i≤m

ki .

Coeffiecient of x1x2...xm is non-zero
⇒ 2-egde Weight Choosable.
Coeffiecient of xk1

1 xk2
2 ...xk2

m is non-zero for ki ≤ 2
⇒ 3-egde Weight Choosable.
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Introduction

Example

Then the associated polynomial: PG (x1, x2, x3, x4, x5)

= (x4−x2−x5)(x1+x5−x3)(x2−x4−x5)(x3+x5−x1)(x1+x2−x3−x4).
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Introduction

Permanent

Let m ×m matrix A = [aij ].
1. Permanent:

perA =
∑

σ∈Sm

(

m
∏

i=1

aiσ(i)

)

.

2. Let K = (k1, k2, ..., km), ki ≥ 0 and
∑m

i=1 ki = m.
Repeating the i -th columns ki times, denoted A(K ).
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Introduction

Permanent Index

permanent index :
The minimum of k so that there is

K = (k1, k2, ..., km), ki ≤ k

for all i and perA(K ) 6= 0.
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Introduction

Orientation

Fixed orientation D of a graph G , define the associated matrix

AG = [aij ] by

aij =







1, if ej is incident to the head of ei ;
−1, if ej is incident to the tail of ei ;
0, if ej and ei are not incident.
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Introduction

The Relation

PG (x1, x2, x3, x4, x5) AG

= (x4 − x2 − x5) 0 −1 0 1 −1
(x1 + x5 − x3) 1 0 −1 0 1
(x2 − x4 − x5) 0 1 0 −1 −1
(x3 + x5 − x1) −1 0 1 0 1

(x1 + x2 − x3 − x4) 1 1 −1 −1 0
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Introduction

The Relation

Coefficient of x1x2x3x4x5: perAG .
Coefficient of x2

1x2x3x4: perAG (2, 1, 1, 1, 0)/2!.
Coefficient of x2

1x
2
2 x3: perAG (2, 2, 1, 0, 0)/2!2!.

Coefficient of x3
1x2x3: perAG (3, 1, 1, 0, 0)/3!.
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Introduction

The Lemma

Lemma

([2]) Let A = [aij ] be a m ×m matrix with finite permanent
index. Let the polynomial

P(x1, x2, ..., xm) =

m
∏

i=1

(

m
∑

j=1

aijxj

)

,

then mind(P) = pind(A).
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Introduction

Useful Result

Theorem

([2]) Let AG be an associated matrix of G . If pind(AG ) ≤ k,
then G is (k + 1)-edge weight choosable.
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The Paths

Paths

Let path Pm : v1v2...vm+1 with m edges.
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The Paths

Associated Matrices

APm
=

























0 −1 0 0 0
. . .

1 0 −1 0
. . . 0

0 1 0
. . . 0 0

0 0
. . . 0 −1 0

0
. . . 0 1 0 −1

. . . 0 0 0 1 0

























.
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The Paths

2-Choosability

Theorem

Let Pm be a path. Let APm
be the associated matrix of Pm,

m ≥ 2. Then

perAPm
=

{

(−1)
m
2 , if m is even

0, otherwise.

AP2
=

(

0 −1
1 0

)

AP3
=





0 −1 0
1 0 −1
0 1 0




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The Paths

3-Choosability

Lemma

Let APm
be the associated matrix of path Pm with m ≥ 4

edges. Let K = (k1, k2, ..., km) where k1 = km = 0,
k2 = k3 = 2, and other ki = 1. Then

perAPm
(K ) = 4

K = (0, 2, 2, 1, ..., 1, 0)
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The Paths

3-Choosability

APm
(K ) =































−1 −1 0 0 0 0 · · · 0 0
0 0 −1 −1 0 0 · · · 0 0
1 1 0 0 −1 0 · · · 0 0
0 0 1 1 0 −1 · · · 0 0
0 0 0 0 1 0 · · · 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 · · · 0 −1
0 0 0 0 0 0 · · · 1 0
0 0 0 0 0 0 · · · 0 1































,



Weight Choosability of theta Graphs

The Paths

Non-2-Choosability

P3 is 2-choosable. Take x1, x3 so that x1 6= x3 and x2 6= 0.
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The Paths

Non-2-Choosability

Pm is not 2-choosable for odd m ≥ 5.
(1) xi 6= xi+2 and x2 6= 0, xm−1 6= 0.
(2) Assign L(e2j) = {j − 1, j} for j = 1, 2, ..., m−3

2
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The Cycles

Cycles

Let E = {e1, e2, ..., en} be the edge set of Cn. Give the
orientation as ei+1 follows ei for i = 1, 2, ..., n− 1 and e1
follows en.
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The Cycles

Associated Matrices

ACn
=



























0 −1 0 0 · · · 0 0 1
1 0 −1 0 · · · 0 0 0
0 1 0 −1 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 −1 0
0 0 0 0 · · · 1 0 −1
−1 0 0 0 · · · 0 1 0



























.
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The Cycles

2-Choosability

n is odd: an = 1n + (−1)n = 0.

n is even:

bij =







1, if i − j = 0;
−1, if i − j = −1(mod n);
0, otherwise.

an = (1
n
2 + (−1)

n
2 )b n

2
=

{

4, if 4 divides n
0, otherwise.
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The Cycles

2-Choosability

Theorem

Let Cn be a cycle. Let ACn
be the associated matrix of Cn,

n ≥ 3. Then

perACn
=

{

4, if 4 divides n;
0, otherwise.
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The Cycles

3-Choosability

Theorem

Let ACn
be the associated matrix of Cn, n ≥ 4.

Let K = (k1, k2, ..., kn) where k1 = k2 = 2, k3 = k4 = 0 and
other ki = 1.
Then

perACn
(K ) = (−1)n × 4.

In particular, perACn
(K ) 6= 0.



Weight Choosability of theta Graphs

The Cycles

Associated Matrices

ACn
=



























0 −1 0 0 · · · 0 0 1
1 0 −1 0 · · · 0 0 0
0 1 0 −1 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 −1 0
0 0 0 0 · · · 1 0 −1
−1 0 0 0 · · · 0 1 0



























.
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The Cycles

Finding A(K )

AC4
(K ) =









0 0 −1 −1
1 1 0 0
0 0 1 1
−1 −1 0 0









AC5
(K ) =













0 0 −1 −1 1
1 1 0 0 0
0 0 1 1 0
0 0 0 0 −1
−1 −1 0 0 0













a4 = 4, a5 = −4.
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The Cycles

Finding A(K )

ACn
(K ) =



























0 0 −1 −1 0 · · · 0 1
1 1 0 0 0 · · · 0 0
0 0 1 1 0 · · · 0 0
0 0 0 0 −1 · · · 0 0
0 0 0 0 0 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · 0 −1
−1 −1 0 0 0 · · · 1 0



























.

an = an−2 = (−1)n × 4.
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The Cycles

Non-2-Choosability

Theorem

If 4 does not divide n, then Cn is not 2-edge weight
colorable.
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The Cycles

Consequences

2-edge weight choosable:
P3, Pm for even m and Cn for 4 divides n.

3-edge weight choosable:
Pm for odd m 6= 3 and Cn for 4 does not divide n.
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The θ-graphs

What Is a θ-graph?

θ(m1,m2,m3) for the θ-graph if the lengths of the upper,
middle, and lower paths are m1,m2,m3, respectively.
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The θ-graphs

Associated Matrices

Aθ(3,2,3) =

























0 −1 0 1 0 1 0 0
1 0 −1 0 0 0 0 0
0 1 0 0 −1 0 0 −1
1 0 0 0 −1 1 0 0
0 0 −1 1 0 0 0 −1
1 0 0 1 0 0 −1 0
0 0 0 0 0 1 0 −1
0 0 −1 0 −1 0 1 0

























.
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The θ-graphs

Associated Matrices





AX AXY AXZ

AYX AY AYZ

AZX AZY AZ



 ,

AX , AY , and AZ : associated matrix of paths of lengths

m1,m2,m3, respectively.
Other submatrices have only two numbers: 1 on the upper left
and −1 on the lower right.



Weight Choosability of theta Graphs

The θ-graphs

Notations

1. S = (R ,C ) where |R| = |C | and

R ⊆ {1, 2, ...,m},C ⊆ {1, 2, ...,m}.

2. AS : submatrix of A formed by the R rows and C -th
columns.
3. A(S): submatrix of A obtained by deleting the R rows and
C columns.
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The θ-graphs

The Main Proposition

Proposition

Let Aθ(m1,m2,m3) be the associated matrix of θ(m1,m2,m3).
Let S3 demote the permutation group of rank 3. Then
1. perAθ(m1,m2,m3) = perAθ(mσ(1),mσ(2),mσ(3)) for all σ ∈ S3.
2. perAθ(m1+4,m2,m3) = perAθ(m1,m2,m3) for m1 ≥ 3.
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The θ-graphs

The Proof

Let A = Aθ(m1+4,m2,m3) and B = Aθ(m1,m2,m3). Such A has the
following form:

A =



































0 −1 0 0 0 0 0 · · ·
1 0 −1 0 0 0 0 · · ·
0 1 0 −1 0 0 0 · · ·
0 0 1 0 −1 0 0 · · · AXY AXZ

0 0 0 1 0 −1 0 · · ·
0 0 0 0 1 0 −1 · · ·
0 0 0 0 0 1 0 · · ·
...

...
...

...
...

...
...

. . .
...

...
AYX AY AYZ

AZX AZY AZ



































.

Choose R = {2, 3, 4, 5, 6} with |R| = 5.
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The θ-graphs

The Proof

perAS1 = perA(R,{1,2,3,4,5}) = per













1 0 −1 0 0
0 1 0 −1 0
0 0 1 0 −1
0 0 0 1 0
0 0 0 0 1













= 1.

perAS2 = perA(R,{1,3,4,5,6}) = per













1 −1 0 0 0
0 0 −1 0 0
0 1 0 −1 0
0 0 1 0 −1
0 0 0 1 0













= 1.
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The θ-graphs

The Proof

perAS3 = perA(R,{1,2,3,4,7}) = per













1 0 −1 0 0
0 1 0 −1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1













= 0.

perAS4 = perA(R,{2,3,4,5,6}) = per













0 −1 0 0 0
1 0 −1 0 0
0 1 0 −1 0
0 0 1 0 −1
0 0 0 1 0













= 0.



Weight Choosability of theta Graphs

The θ-graphs

The Proof

perAS5 = perA(R,{2,3,4,5,7}) = per













0 −1 0 0 0
1 0 −1 0 0
0 1 0 −1 0
0 0 1 0 0
0 0 0 1 −1













= −1.

perAS6 = perA(R,{3,4,5,6,7}) = per













−1 0 0 0 0
0 −1 0 0 0
1 0 −1 0 0
0 1 0 −1 0
0 0 1 0 −1













= −1.
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The θ-graphs

The Proof

perA =

6
∑

k=1

perASkperA
(Sk )

= perA(S1) + perA(S2) − perA(S5) − perA(S6).

perB =

m1+m2+m3
∑

k=1

perB({2},{k})perB
({2},{k})

= perB ({2},{1}) − perB ({2},{3}).
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The θ-graphs

The Proof

perA(S1) + perA(S2) = perB ({2},{1}),

perA(S5) + perA(S6) = perB ({2},{3})

perA = perB .

perAθ(m1+4,m2,m3) = perAθ(m1,m2,m3).
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The θ-graphs

The Table of perAθ(m1,m2,m3)

m1 = 1 m3 = 2 m3 = 3 m3 = 4 m3 = 5 m3 = 6
m2 = 2 0 4 0 4 0
m2 = 3 0 −4 0 4
m2 = 4 0 −4 0
m2 = 5 0 4
m2 = 6 0
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The θ-graphs

The Table of perAθ(m1,m2,m3)

m1 = 2 m3 = 2 m3 = 3 m3 = 4 m3 = 5 m3 = 6
m2 = 2 −20 0 4 0 −20
m2 = 3 4 0 4 0
m2 = 4 −4 0 4
m2 = 5 4 0
m2 = 6 −20
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The θ-graphs

The Table of perAθ(m1,m2,m3)

m1 = 3 m3 = 3 m3 = 4 m3 = 5 m3 = 6
m2 = 3 0 −4 0 4
m2 = 4 0 −4 0
m2 = 5 0 4
m2 = 6 0
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The θ-graphs

The Table of perAθ(m1,m2,m3)

m1 = 4 m3 = 4 m3 = 5 m3 = 6
m2 = 4 20 0 −4
m2 = 5 −4 0
m2 = 6 4
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The θ-graphs

The Table of perAθ(m1,m2,m3)

m1 = 5 m3 = 5 m3 = 6
m2 = 5 0 4
m2 = 6 0

m1 = 6 m3 = 6
m2 = 6 −20
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The θ-graphs

2-Choosability

Theorem

Let Aθ(m1,m2,m3) be the associated matrix of θ(m1,m2,m3).
Then perAθ(m1,m2,m3) 6= 0 if and only if m = m1 +m2 +m3 is
even.
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The θ-graphs

Useful Proposition

Proposition

([2]) Let G be a graph whose edge set can be partitioned
into two subgraph P,Q, in which P = {e1, e2, ..., em}.
Assume that the associated matrices AP , AQ have
permanent indexes at most 2. Let perAP(K ) 6= 0 where
K = (k1, k2, ..., km) with ki = 0 for any correspondent edge
ei incident to Q. Then pind(AG ) ≤ 2.
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The θ-graphs

The Proof

We can separate P into two parts:

P1 = {ei ∈ P : ei does not link to Q},

P2 = {ei ∈ P : ei link to Q}.

AG =





AP1
... 0

... AP2
...

0 ... AQ



 .
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The θ-graphs

The Proof

By assumption, all the edges ei in P2 gives ki = 0.

AG (K
′) =

(

AP(K ) ...
0 AQ(K

(Q))

)

with permanent

perAG (K
′) = perAP(K )× perAQ(K

(Q)) 6= 0.
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The θ-graphs

Consequences

m1 ≤ m2 ≤ m3.
If m3 ≥ 4, then P = Pm3

and Q = Cm1+m2
.

Check the case m3 ≤ 3.
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The θ-graphs

3-Choosability

m1 m2 m3 K perAθ(m1,m2,m3)(K )
1 2 2 (0, 2, 1, 1, 1) 12
1 2 3 (1, 1, 1, 1, 1, 1) 4
1 3 3 (2, 0, 1, 1, 1, 1, 1) 16
2 2 2 (1, 1, 1, 1, 1, 1) −20
2 2 3 (2, 1, 0, 1, 1, 1, 1) −4
2 3 3 (1, 1, 1, 1, 1, 1, 1, 1) 4
3 3 3 (2, 2, 1, 0, 0, 1, 1, 1, 1) 4

.
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The Generalized θ-graphs

What Is a Generalized θ-graph?

Generalized θ-graph θ(m1,m2, ...,mp):
p paths which have the two common endpoints.
In particular, θ(m) = Pm and θ(m1,m2) = Cm1+m2

.
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The Generalized θ-graphs

A Useful Theorem

Theorem

([2]) If G 6= K2 is a clique, complete bipartite graph, or a
tree, then mind(G ) ≤ 2.
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The Generalized θ-graphs

Step 1

Step 1. θ(2, 2, ..., 2) = K2,p is 3-edge weight choosable.
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The Generalized θ-graphs

Step 2

Step 2. mi ≥ 2 for all i = 1, 2, ...p
θ-graph θ(m1,m2, ...,mp) with is 3-edge weight choosable.
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The Generalized θ-graphs

Step 3

Step 3. θ(m1,m2, ...,mp, 1) is 3-edge weight choosable.
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The Generalized θ-graphs

Step 3

Let L ⊆ R and c ∈ R.

L+ c = {l + c : l ∈ L}.

Arbitrary choose x ∈ L(u0u1) and fix this x . p ≥ 3, define a

lists L′(e) on θ(m1,m2, ...,mp) by

L′(e) = L(e) +
x

p − 2
.
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The Generalized θ-graphs

Odd Cycle Absorbs P3

Theorem

Assume that k ≥ 3. Let G = (V ,E ) be a graph. Suppose
there are path P3 = v0v1v2v3 and odd cycle Ct in G such
that P3 ∩ Ct = {v0, v3} ⊂ V . If G − P3 is k-edge weight
choosable, then so is G .
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The Generalized θ-graphs

The Proof

L′(e) =























L(e) +
xv0v1
2

+
xv2v3
2

, if e = ui−1ui for odd i ≤ s;
L(e)−

xv0v1
2

−
xv2v3
2

, if e = ui−1ui for even i < s;
L(e) +

xv0v1
2

−
xv2v3
2

, if e = ui−1ui for odd i > s;
L(e)−

xv0v1
2

+
xv2v3
2

, if e = ui−1ui for even i > s;
L(e), otherwise.
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The Generalized θ-graphs

The Proof

xe =























x ′
e −

xv0v1
2

−
xv2v3
2

, if e = ui−1ui for odd i ≤ s;
x ′
e +

xv0v1
2

+
xv2v3
2

, if e = ui−1ui for even i < s;
x ′
e −

xv0v1
2

+
xv2v3
2

, if e = ui−1ui for odd i > s;
x ′
e +

xv0v1
2

−
xv2v3
2

, if e = ui−1ui for even i > s;
x ′
e , otherwise
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Further Problems

Problems

1. Total Weight Choosability,
by T. Wong and X. Zhu [9].

2. Weight Choosability of Hypergraphs,
by M. Kalkowski, M. Karonski, and F. Pfender [10].
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